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Abstract. We consider the standard single-server queue with unlimited waiting space
and the first-in first-out service discipline. We find conditions for the steady-state
waiting-time distribution to have small-tail asymptotics of the form
x!llogPW>x)—-8*asx > o

for 8* > 0. We require only stationarity of the basic sequence of service times minus
interarrival times and a Giirtner-Ellis condition for the cumulant generating function of
the associated partial sums, i.e., n-! log Ee8Sn — y(0) as n — oo, plus regularity con-
ditions on the decay rate function y. The asymptotic decay rate 8* is the root of the
equation y(0) = 0. This result in turn implies a corresponding asymptotic result for the
steady-state workload in a queue with general nondecreasing input. This asymptotic
result covers the case of multiple independent sources, so that it provides additional
theoretical support for a concept of effective bandwidths for admission control in
emerging high-speed communication networks.
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Abstract. We consider the standard single-server queue with unlimited waiting space
and the first-in first-out service discipline. We find conditions for the steady-state waiting-
time distribution to have small-tail asymptotics of the form z=!log P(W > z) — —6° as
z — oo for 8* > 0. We require only stationarity of the basic sequence of service times
minus interarrival times and a Gartner-Ellis condition for the cumulant generating function
of the associated partial sums, i.e., n='log Ee*S» — (6) as n — oo, plus regularity
conditions on the decay rate function . The asymptotic decay rate 6* is the root of the
equation ¥(#) = 0. This result in turn implies a corresponding asymptotic result for the
steady-state workload in a queue with general nondecreasing input. This asymptotic result
covers the case of multiple independent sources, so that it provides additional theoretical
support for a concept of effective bandwidths for admission control in emerging high-speed
communication networks.
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1. Introduction and Summary

We are pleased to be able to contribute to this Festschrift in honor of Lajos Takdcs on his 70
birthday. In this paper we try to emulate Takdcs by seeking the essential mathematics underlying
a probability problem of applied relevance. Like Takdcs (1962, 1963, 1967), we focus on the

single-server queue.

In particular, we focus on small-tail asymptotics for the steady-state waiting time W and the

steady-state workload L. We find general conditions under which
x MogP(W > x) = =0° a5 x = oo (.1

for 8° > 0, and similarly for L. We call the constant 8° in (1.1) the asymptotic decay rate. The
fuilowing clementary proposition helps put (1.1) in perspective. It is easily proved using
integration by parts; e.g., p. 150 of Feller (1971).

Proposition 1. For any random variable Z and positive constans 0°, the following are

equivalent:
()  x'10gP(Z > x) = —0° asx > es;
(i) wp(020:Ee* < w) =0
(iii) Foralle > O, there is an xo » xq(&) such that
e W+ < p(Z5 x) e W% forallx > x4 .

‘There is currently great interest in small-tail asympeotics such as ia (1.1) because of possible
applications to the design and control of emerging high-speed communication networks. In
particular, it has been recognized that asymptotic decay rate functions (defined below) that
determine asymptotic decay rates such as 0° in (1.1) may be used (0 create effective bandwidths

for admission control and other network resource allocation probleins; see Gibbens and Hunt

(1991), Kelly (1991), Guerin, Ahmadi and Naghshineh (1991), Chang (1992), Whint (1992),

w



Elwalid and Mitra (1992), Baiocchi (1992), Choudhury and Whitt (1992), Sohraby (1992) and
Chang, Heidelberger, Juneja and Shahubuddin (1992). The last reference also illustrates how the
asymptotic decay rates may be used to speed up simulations. Our approach here is most closely
rated to the papers by Whitt (1992), Chang (1992) and Chang et al. (1992). In particular, the

results here provide theoretical support for the procedures in Whitt (1992).
In many cases, a stronger limit than (1.1) holds, namely,
eP(W>x) 90’ asx — e 1.2)

for positive constants 0° and a®. Then we call a® the asymptotic constant. It is easy to see that
(1.2) implies (1.1) but not conversely. An M/G/1 queue for which (1.1) holds but (1.2) does not
appears in ExampleS of Abate, Choudhury and Whitt (1992a). Then
P(W > x)~ax~32¢~%7 a5 x = o0, where f(x)~g(x) means that f(x)/g(x) = 1. In this
paper we focus on the weaker forrs (1.1). For work focusing on (1.2), see Abate, Choudhury and
Whitt (1992a,b,c), Asmussen (1989), Asmussen and Perry (1992), Neuts (1986), Tljms (1986),

van Ommeren (1986) anc references in these sources.

When (1.2) holds, a natural approximation for the tail probabilities is P(W > x)=a"e~ ¥~
for x not too small. Since the asymplotic constant o* in (1.2) is often not easy to obtain, Abate,
Choudhury and Whitt (1992a) suggest the simple approximation a*=0° EW. For some purposes,
¢.g.. for percentiles, even a=1 is satisfactory. In many cases, a’=1 produces a bound, i.c..
P(W > x) S e see p.269 of Asmussen (1987) and Chang (1992). These exponential
spproximations can also be used with (1.1), even though (1.1) does not provide as much suppon
as (1.2). However, Example S of Abate, Choudhury and Whitt (1992a) shows that the quality of
the approximation provided by the asymptotics can deteriorate dramatically whea (1.1) holds but
(1.2) does not. Moreover, for the admission control problem, it is important to note that the

quality of the approximations for the tail probabilitics provided by the simpie one-term




exponential approximations also can deteriorate dramatically when the number of independent

sources increases; see Choudhury, Lucantoni and Whitt (1993).

In this first section, we present our main result and discuss its implications. We give proofs in
Sections 2-8 and examples in Section 9. In §1.1 we state our main result for W; in §1.2 we
discuss some implications and related results; in §1.3 we state our main results for L, which
follow directly from the results for W by discretizing the processes; and in §1.4 we give sufficient
conditions for W and L to have the same logarithmic asymptotics. This involves the logarithmic

asymptotics of the time-stationary and customer-stationary (embedded-stationary or Palm-

stationary) versions of the arrival process. In §1.5 we discuss logarithmic asymptotics for
steady-state queue lengths.
1.1 The Main Result

Let (X, :n 2 1} be a sequence of real-valued random variables and define the associated

waiting-time sequence { W, : n 2 0} recursively by letting Wo = 0 and
Weer = (W, + xuol]’ 20, 1.3)

where [x]* = max{x,0}). Let So =0 and S, = X;+...+X,, n21. Let =» denote
convergence in distribution.
Theorem 1. Let (X, : n 2 1) be strictly stationary. [f there exists a function ¥ and positive
constarts 0° and ¢° such thas
(i) n~"log Ee*** — w(B)asn = « for [0 - 0°| < ¢", (1.4)
(ii) W is finite in a neighborhood of 8* and Cifferentiable ¢t 0° with w(8°) = 0 and
v (8°) > 0,and (1.5)
(i) Ee*5* < o forn21, (1.6)

then W, =0 Wasn — e and(1.1) holds.

—_————-——




A significant feature of Theorem 1 is that there are no independence or Markov assumptions.
Instead, we have condition (1.4) involving the asymptotic behavior of the cumulant generating
functions of the partial sums S, as in the Girtner (1977)-Ellis (1984) theorem of large deviations
theory; see p. 14 of Bucklew (1990). (For a discussion of the connection to cumulants, see
Choudhury and Whitt (1992).) Indeed, our proof of Theorem 1 follows large deviations theory,
using exponential changes of measure. For additional background on large deviations theory, see

Dembo and Zeitouni (1992) and Shwartz and Weiss (1993).

The condions in Theorem 1 are very generul, but they are not necessary, as we show in
Example 1 in §9.

A (familiar) key step in proving Theorem 1 is representing W, as the maximum of reverse-

time partial sums; i.c.,

W, = S,-minS; = max (S,-5;}, (1.7
0gksn 0sksa

so that, when we extend (X, ; % a doubly infinite stationary sequence (X, : —es < 28 < o},
W, is distributed as M, = max{S, :0 S kS n), where S = Oand S, = X_, +...+X_;. The
conditions in Theorem 1 obviously apply to 5y as well as §; because Ee** = Ee%'. Since the
stationarity is required only for this step, we obtain Theorem | immediately from the following
result for maxima of partial sums M, = max({S; : 0 < k < n}), which does not require
stationarity. We prove the following result in §2.

Theorem 2. Let (X, : n 2 1) be a sequence of real valued random variables (not necessarily
stationary). If there exists a function y and pasitive constants 8° and ¢° such that (1.4){1.6)
hold and

lim sup Ee*** < w for 6] < ¢, (1.8)
L ]

thenM, = Mwp.lasn = «and




x"'ogP(M > x) - -6 as x = o . (1.9)

Note that condition (1.8) in Theorem 2 is not needed if { X, } is stationary, because then (1.8)
is implied by (1.6) in the case n = 1. For this, recall that Ee®'Z < o« when Ee®? < 0 and

8, < 6, for any random variable Z by Holder's inequality; see (21) on p. 47 of Chung (1974).

Also note that condition (1.6) is clearly necessary in Theorem 2, because M 2 S, for all .

Hence, Ee®™ = o if Ee¥'5* = oo forany n.

We remark that we have also proved a version of Theorem 2 with condition (1.8) replaced by
Ee** < o forn 2 1 for some 6 with © > 6°. This alternative condition might be preferred in

Theorem 2, but it would require that we strengthen (1.6) in Theorem 1.

In Theorem 1 we have assumed that the basic sequence { X, } is stationary. However, this is
not a great restriction because the focus is on the steady-state waiting time W. Given the
distribution of W, it is usually possible to choose a stationary version of any given basic sequence
{X.} suchthat W, =» Was n—e; c.g., sce p. 13 of Borovkov (1976). Of course, the conditions
in Theorem 1 apply to this stationary version. However, under regularity conditions,
nonstationary versions and stationary versions of the basic sequence will couple so that the
conditions for one enable us to verify the conditions for the other.

In other words, W typically does not depend on the initial part of the basic sequence { X, |.
In contrast, the maximum M in Theorem 2 clearly does depend on the entire sequence { X, }. For
a simpic example, suppose that {X, :n 2 2} is iid with a good distribution, but
P(X, > x)~Ax"?. Then X, influences the tail behavior of S, for all # and Af, but not that of W.

An important role is played by the function y in Theorem 1; we call it the (asymptotic) decay
rase finction. 1t is significant that ' is necessarily convex where it is finite, because log Ee*Z is

convex where it is finite for any random variable Z, as can casily be seen by applying Holder's




incquality. It is important to distinguish the decay rate function y from the associated large

deviations rate function I(x), defined by

I(x) = sgp{Ox - y(0)}: (1.10)

¢.g., see Chapter 1 of Bucklew (1990). The functions ¢ and / are intimately related. Indeed, they

are convex conjugates of each other; see p. 183 of Bucklew (1990).
1.2 Implications ard Related Results

The conditions of Theorems 1 and 2 are easy to check when the basic sequence { X, } is i.i.d.
This special case includes the GI/GU/1 queve (with i.i.d. service times independent of i..d.
interarrival times), for which it is possible to obtain the stronger result (1.2); e.g., see p. 269 of
Asmussen (1987). In this G/GU/1 case, Abate, Choudhury and Whitt (1992d) have shown that it
is also easy to compute the tail probabilitics by numerical transform inversion, numerically
integrating a contour integral representation for Ee~*".

Corollary 1. [f (X, :n2 1} isiid, EX <0

Ee'X = (1.11)

and E¢*Y < e for-e < 0 < 0° + ¢ for some ¢ > O, then the conditions of Theorems I and 2
hold with w(8) = log Ee*%, so that (1.1) and (1.9) hold.
Proof. Note that n~'log Ee* = Ee*™ = y(6) when (X, } is ild Since w(0) = I.

v (0) = EX < Oand yiscoavex, y'(6°) >0. ®

Thus, for the GUGI/1 queue, it is easy to see what the decay rate function v is. For example.
in the M/M/1 quene with service rate] and arrival rase p, W(8) = ~log{(1~8)(1+6/p)); for
the D/M/1 queve, w(8) = -log(1-8)-8/p; and for the MD/I queue.
v(06) = 6-log(1+6/p).

'S




It is worth pointing out that the logarithmic asymptotics in (1.1) tend to be robust. In general,
weak convergence of distribuiions does not imply that large deviations asymptotics converge.
However, in this context, weak convergence plus uniform integrability does imply that the
cumulant generating function converges, and the logarithmic asymptotics here depends only on
the location of the root (and not, for example, the slope at the root). We illustrate by stating a
concrete result in the context of Corollary 1.

Corollary 2. Let {XY:n 2 1) be iid. for each ¥y > O, where X] = X) as y = 0 and
Ee*™ < M for some © > 6 and some M, for all y. If X| satisfies the conditions of Corollary I
foreachy 2 O, then (1.1) holds for eachy 2 0 and 6y — 85 asy — 0.

Proof. Since X] = XJasy = 0,¢* =» ¢*® a5y = 0. The uniform moment bound implies
the uniform integrability needed to obtain Ee®™ — Ee*™ as y — 0 for all 6 < 83 + ¢ for

somee W

In order to understand what \he asymptotic decay rate 6° in (1.1) primariiy depends upon, and
sometimes to compute 6°, it is useful to consider heavy-traffic asymptotic expansions for 6°
based on expanding the function y(6) in a Taylor series expansions about 0. Such heavy-traffic
asymptotic expansions are established ia Abate, Choudhury and Whitt (1992s), Abate and Whint
(1992) and Choudhury and Whitt (1992). Since log Ee** 1s the cumulant generating function of
S, the derivatives of y(0) are the asymptotic cumulants of S,. To illustrate, we establish the
first term of the heavy-traffic expansion here. The first term coincides with the familiar decay rate
associsted with expooential heavy-traffic Limits; see Kingman (1962), Iglehart and Whit! (1970)
and Choudhury and Whiat (1992).

Corollary 3. Consider a family of models indexed by p, 0 < p < |. Suppose that the
assumptions of Theorem | hold for each p and

(i) EX,(p) = ~(1-p)




(ii) n~'VarS,(p) = 62 asn = 0, 0 < 62 < oo, and

(iii)  nVE(S(p)=(1=p)n)® = YaSH => o0, =00 < Y < oo

Then (1.1) holds with

0°(p) = 2(—16;-L) +o(l-p)asp 1.

Proof. Since logEe's' is the cumulant generating function of S,, we can apply Taylor’s theorem

to obtain

62Var(S,)

2
P +0(6°)as6 -0

n~ViogEe® = -6(1-p) +

uniformly in p and 1), using condition (iii) to get the uniformity in n; e.g., see (4°) on p. 268 of

Chung (1974). Hence

e’a’

5 +0(0%) 28080

v(6) = -8(1-p) +

uniformly in p, s0 that the desired conclusion follows. ®

mmmumumms.mGuudan(hnpoﬂblydepcndeﬁ)lordln.
When S, is Gaussian, Theorem 1 takes a very simple form. In particular, thea (1.1) holds with
6° in Corollary 3. The Gaussian assumption holds spproximately in an E;/E,./1 queue for
suitably large & and m. (As usual, E; stands for Erlang of order k) A direct Gsussian
approximation has also been proposed and studied by Addie and Zuckerman (1993). This
analysis provides additional justificatioa for the heavy-traffic approximation, because it does not
(at Jeast directly) require a high traffic intensity.
Corollary 4. Suppose that S, is Gaussian with negative mean m,, and finise variance 03 for all
n2) lfmy/n = mand 03/n = 02 a3 B = e, where m < 0 < G2, then the conditions of
Theorem 2 hold with w(8) = Om + 0202/2 30 that (1.9) holds with 8° = -2m/c? > Q. /).
in addition, the basic sequence { X, ) is stationary, then the conditions of Theorem 1 hold, so that




(1.1) holds.
Proof. Recall that Eexp(6S,) = exp(6m, +6%0%/2) when S, is Gaussian with mean m, and

variances?. @

In queueing theory, (1.3) is the familiar Lindley equation associated with a single-server
queue with unlimited waiting room snd the first-in first-out service discipline. Then
X, =V, - U, where, forn 2 1, V, is the service time of customer n and U, is the interarrival

time between customers n and n + 1. With this indexing, we begin with a first customer arriving

al an empty System.

Another queueing model that leads to the representation X, = V, - U, is the queue length
in a discrete-time single-server queue. Thea we interpret V,, as the number of arrivals at epoch
and U, as the number of potential departures at epoch n. For this representation to be valid, we
usually require special Markov or deterministic assumptions in the service process, or
‘‘autonomous service;'' see p. 235 of Borovkov (1976). We use this below in §1.3. For the
ATM networks it is often reasonable to assume deterministic service, so that this Lindley
equation representation is indeed appropriste. For exampie, if there is at most one service
completion af each epoch, then U, = 1 for all n. This mode! variant is considered by Chang
(1992), Sohrady (1992) and Chang et al. (1992). These authors also focus on the Gartner-Ellis

condition in (1.4), but Theorem 1 here seems o be new.

Given Theorems | and 2, we want to know whea the conditions are satisfied. In the queueing
coatext, the conditions can be expressed in terms of the two sequences {U, :n 2 1} and
{Va:n 2 1) scparately when the sequences {U, )} and {V, ) are independent. (However, note
that such independence is not required in Theocem 1.)

Tostate the result, et S, = Vy+...+ V, andlet Sy = U; +...4+ U,.

Proposition 2. Suppose that X, = V, = U,, where {(V,:n21) and {(U,:n 21} are




-10-

independent sequences of nonnegative random variables. If there exist functions ¥, and y, and

positive constants 0°, €* and M such that

(i)n~" log Ee® = y,(0)asn — = for 10-0°] < ¢*, (1.12)
(ii) ¥, is finite in a neighborhood of 6° and differentiable at 8°, (113)
(i) Ee¥™ < o forn 2 1, (1.14)
(iv)Ee*™ < Mforn2 landall 18] < ¢, (115)
(v)n~! log Ee% o V.(=0) as n = o, for [0-0"] < &*, (1.16)
(vi) ¥, is finite in a neighborhood of -0° and differentiable a1 ~6°, 1.17)
(vii) Ee™*Y* < Mforn 2 1andall |6] < ¢° and (1.18)
(viii) w(6°) = 0and ' (8%) > 0for w(0) = v,(0)+y,(-0), (1.19)

then (X, ) satisfies condition.s (1.4)-(1.6) and (1.8) with decay rate function v, so that (1.9)
holds. If, in addition, (\U,,V,) ) is stationary, then (X, } is stationary and (1.1) holds.
Prool. By the independence,

EC.S‘ = E‘.(S:‘-’:) - E‘“:&-U! 5
30 that
log Ee*** = log Ee** + log Ee™*" .

Since St 20, Ee~*" < 1. Similardy, Ee*™ = Ee*"*Ee™*Y:. Hence, it is clear that the

assumed coaditions here imply the conditions in Theorem 1. ®

Assuming that the arrival and service processes . o¢ independent, we can trest them separately.
To obtain further results for these separate processes, it is useful to have a relation between the

asympiotics for a counting process and the ssympiotics for its inverse pastial sum process. For
this purpose, we apply a result from Glyan and Whitt (1993).

Let {T, : n 2 0} be a nondecreasing sequence of random variabies with Tp = 0. We think
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of T, as the amival epoch of customer n in the queue; then T, = U,+...+U,. let

{N(t) : t 2 0} be the associated counting process defined by
N(t) =max{n20:T,s1¢},120. (1.20)
The (familiar) key relation between T, and N(¢) that we exoloit is
{N(¢) 2n} = (T, St} (1.21)
for all nonnegative n and ¢.

A process {Z(¢) : ¢ 2 0} will be said to satisfy the Gartner-Ellis condition with decay rate
Sunction y if

‘llmt“log Ee*Z") = y(6) for all 0eR . (122)
b

For a discrete-time process, we let ¢ run through the positive iutegers in (1.22).

The associated decay rate function y will be said to satisfy the auxiliary large deviations (LD)
regularity conditions if (1.23)<(1.26) below hold:

ﬁ-H(O:v(O)-+~| >0, (1.23)

v is differentisble everywhere in (-, B) , (1.24)
.nﬂv’(e) = + e, and (1.25)

HV(O) = y(B) . (1.26)

The conditions (1.22)~(1.26) are standard in the large deviations litersture. In particular,
under conditions (1.22)(1.26), the process {Z(s) : ¢ 2 0} satisBies the Girtner (1977) - Edlis
(1984) theorem, L.c., the large deviations principle holds for {Z(1) : ¢ 2 0) with rate function |
is (1.10); see pp. 42-50 of Dembo and Zeltouni (1992).




s

The following resuit is proved in Glynn and Whitt (1993). let ™! be the inverse function of
y. Note that y is nondecreasing, and strictly increasing where it i§ finite. Hence, for x and y
finite, y~'(y) = xifandonlyif y(x) = y.
Theorem 3. If the counting process {N(t) : t 2 O} satisfies (1.22)~(1.26), then the inverse
partial sum process {T, : n 2 0} does too, with the possible exception of (1.22) for © = Pr.
Similarly, if (T, : n 2 0} satisfies (1.22)1.26), then {N(t) : t 2 Q) does too, with the possible

exception of (1.22) for @ = By. In particular, then (1.22) holds for both processes, i.e.,

lim "'1og Ee*N® = yy(0) (1.27)

limn~'log Ee'™* = y1(6) (1.28)
R~bes

both hold (with the noted exceptions) and
wn(©) = ~y7'(~0), (1.29)
where they are finite.

Thus, subject o regularity conditions, given the Gartner-Ellis asymptotics for one of N or 7.
we obtain the Gartner-Ellis asympeotics for the other directly and have the inverse relation (1.29).
This paraliels previous relations between other limits for N and T ¢.g., see Iglehart and Whin
(1971), §7 of Whitt (1980), Theorems 3 and 6 of Glynn and Whitt (1988a) and Theorem | of
Glyan and Whitt (1988b).

For example, we can apply Theorem 3 t0 obtain the Gartner-Ellis limit (1.28) foc the parua)
sums S, from the Ganner-Ellis limit (1.27) for the counting process N(¢) derived for batch
Markovian arrival processes in Theorem 1 of Choudhwry and Whint (1992). Abate, Choudhury
and Whitt (1992¢) obtain (1.2) for BMAP/GU/1 queues, while the results here yield (1.1) for

BMAP/G/1 queues, without requiring that the service times be i.i.d. Sufficient conditions for
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(1.22) in terms of embedded regenerauve structure are also given in Theorem 7 of Glynn and

Whitt (1993).

We now show that deterministic sequences provide upper bounds on 6° when {U,} and
{V,} are independent sequences; see §8 of Abate, Choudhury and Whitt (1993a) for related
results. We use the queueing notation G/G/1 to refer to a general stationary sequence
{(U.,V,)} of interarrival times and service times.

Proposition 3. Among G/G/I models satisfying the assumptions of Proposition 2, the asymptotic
decay rate 8° is maximized (a) by deterministic service times among all stationary service-time
sequences {V,} with given mean EV,, and (b) by deterministic interarrival times among all
stationary interarrival-times sequences { U, } with given mean EU

Proof. By Jensen's inequality, Ee®? 2 ¢*2 for any random variable Z, so that
logEe*™ 2 loge*™ = n6 EV, and logEe™*" 2 loge*™ = nOEU,. Hence, if w2 and and
w2 denote the decay rate functions in the deterministic cases, then v, (8) 2 y2(6) and

Vu(=6) 2 y2(~6)forall ® > 0, 50 that the roots in (1.19) must be ordered as indicated. ®

More generally, we can establish stochastic comparisons between any two G/G/1 systems.
Proposition 4. Consider two GAW/I1 queues satisfying the assumptions of Theorem l. If
Ee** < Ee** for all @ 2 0.and all  suitably large, then 6 S 6.

Proof. The condition implies that w,(8) S ¥3(8) for all 8 2 0. Hence, the roots 6] of

wi(6) = Omustbeorderedby 83 <6;. ®

As in Whint (1992), whea {U, ) and {V, ] are independent, we can characterize the arrival
and service decay rate functions v, (~9) and v, (8) from the asymptotic decay rates 8° observey
in GD/1 and D/G/1 queves. To do this, we must coasider all possible arival rates p.
0 < p < 1, 50 that the asymptotic decay rate 6° becomes a function 6°(p). 0 < p < 1. Lat

¥, (=6) refer to the case in which EU, = | and let the case of arrival rate p be obtained by
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considering interarrival times U ,/p for all n, i.e., simple time scaling.
Proposition 5. For G/G/1 models satisfying the assumptions of Proposition 2, (a) the arrival
asymptotic decay rate function \y, (~0) with arrival rate 1 is determined by the decay rate 8° (p)

in G/D/I models with arrival rate p, 0 < p < 1, i.e., by the equation
Vu(-0°(p)/p) +0°(p) =0,0<p <1. (1.30)

(b) The service asymptotic decay rate function ,(0) with service rate 1 is determined by the

decay rate 8° (p) in D/G/I models with arrival rate p, 0 < p < 1, i.e., by the equation
v, (8°(p))-0"(p)/p = 0. (1.31)

Proof. Note that y, (- 0) is a decreasing convex function with y, (0) = —1. Hence, the values
of y,(~8) for 8 > 0 are determined by the intersection with all lines through the origin with
slopes less than —~1. This is provided by (1.30), after making the change of variables
0(p) = 6°(p)/p. Similarly, v, (0) is an increasing convex function with v, (0) = 1. Hence,
the values of v, (9) for © > 0 are determined by the intersection with all lines through the origin

with slope greater than + 1. This is determined by (1.31). @
13 A Contisuous-Time Analog: The Workload

We can apply Theorems | and 2 to obtain corresponding results for continuous-time workload
processes; we will oaly discuss the analog of Theorem 1. Paralleling (1.7), suppose that we have
8 continuvous-time workload process (L(f):¢t 2 0) defined in terms of a continuous-time net

input process { Y(¢):¢ 2 O} by spplying the usual reflection map. i.c.,

L(t) = Y(1)-inf(Y(s):0SsS1},¢20, (1.32)

with L(0) = 0. Moreover, let the net input process be defined in terms of a total input process
{I(¢):¢ 2 O} with noadecreasing sampie paths by
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Y@)=I(t) -1,120. \1.33)

In the G/G/1 queue, I(t) represents the total work in service time to arrive in the interval [0,4],
i.e., the sum of all service times of ail arrivals in (0,¢], but here /(¢) can be more general. For
example, this formulation includes fluid models such as the Markov modulated fluid model; in

Elwalid and Mitra (1992) as a special case (without directly requiring the Markov assumption).

Paralleling Theorem 1, we will work with a version of /(¢) that has stationary increments. We
prove the following result in §4.
Theorem 4. Let the net input process {Y(t):t2 O} have stationary increments with
EY(t) = (p—1)t where p < 1. If there exists a function ¥ and positive constants 8° and €'

such that the analogs of (1.4) and (1.6) hold, i.e., if

1"'1og Ee®'® - y(0) as t —» o for |0-0°| < ¢° (1.34)

Ee*"™ cmforallt >0, (1.35)

and if (1.5) holds for his v, ML(-:) =» Lastot = «and
NgP(L>x) = -8 asx e, (1.36)
Theorem 4 casily applies to superpositions of independent processes, as we now show.
Proposition 6 Consider the workload process L(t) in (1.32) and (1.33) with

I()) = 1)(8) +...4 1,(1) where 1,(1),...,1,(1) are mwually independent nondecreasing

processes each with stationary increments satisfying

-V iogEe* ™ - y,(0) for 10-0°] < ¢* .

E¥'" < wforallt>0and .




If(1.5) holds for

w(0) = y1(0) +...+ y,(0)-6,
then the conditions of Theorem 4 hold, so that (1.36) holds.

Proof. By the independence,

logEe®'® = logEe® ™ +.. + logEe® @ -0r. m

The following proposition treats the standard case in queueing, in which the total input (¢) is
the sum of all the service times of all arrivals in the interval [0,¢]). We prove the following in §7.

Propasition 7. Consider a total input process defined by

A(s)
()= ¥V, t20, (1.37)
iw]

Suppose that {V,, } is independent of {A(t) }.

TV,
n-l& =)

— ,(8) as n =» « for all 0 in a neighborhood of ©

1"V log Ee* ) <5 y,(8) as t = e for all © in a neighborhood of ()
where y, is continuous at 'y, (6). Then

VEMO )y (,(6) ast = o .

14 Palm Equivalence for the Gartner-Ellis Limits: Relating W aad L:

The asymptotics foc W and L differ, in part, because W is based on the customer-stationary
(embedded-stationary or Palm-stationary) sequence (U, } while L is based on the counting
process { A(f) } with stationary increments, which is associated with the time-stationary sequence,
say { U3 ), connected by the Palm transformation, ¢.g., see Franken et al. (1981). However, we
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anticipate that we should have 83 = 6;. To establish that relation, we would like to have Palm
equivalence for the Girtner-Ellis limits, ic., we would like to be able to say that
n~'1ogEe®™ = y,(8) as n = = if and only if n~'logEe®™ — y2(0) as 1 = = and
Y, = Yy, where S¥° = U} +...+ Us, n 2 1. We establish ¢ weaker result here. We show that
if both limits hold with the limit functions y, and v, satisfying regularity conditions, then

W, = V.. We then use this property to provide conditions under which 8] = 3.

We start by relating the asymptotics for L and W when the service titaes are i.i.d. As in
Theorem 2 and §2 of Abate, Choudhury and Whitt (1992b), we apply the generalized Takdcs
(1963) relation between W and L in a G/GU/1 queue (with i.i.d. service times that are independent
of the arrival process); see (1.38) below and (4.5.9) on p. 129 of Franken et al. (1981).
Proposition 8. In a G/GU/I queue, (1.1) holds if and only if (1.36) holds and 0% = 6].

Proof. The gencralized Takxcs relation yields
Ee*t = 1-p + pEe'"E*" , (1.38)

where V, has the stationary-excess or equilibium-residual-life distribution associated with the
service-time distribution. By Proposition 3 here, Theorem 10 of Abate, Choudhury and Whitt

(19928) and Lemma 1 of Abate, Choudhury and Whitt (1992), Ee*”* < wif Ee*™ < oo. ®

We now apply Proposition 8 50 obtain a form of Palm equivalence for the Gartner-Ellis limits.
We prove the following result in §S.
Theorem 8. Let A(1) be a counting process associated with a non-deterministic irzae-stationary
sequence (U, ) and let S be the partial sums associated with the corresponding customer-
stationary sequence { U, ). Assume that the decay-rase function associated with A, 4, satisfies
the auxiliary LD regularity conditions (1.23)~{1.26) with limit of support B, in (1.23). Assume
that
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Ee®A") < o forallt > 0and § < B, (1.39)
and
™ log Ee®A) — y,(0) as t = o for 0 < B, . (1.40)
Assume that
n~'ogEe™®" — y,(~0) asn = e forall 8 > 0, (1.41)
where y, (—0) is finite and differentiable for all ® > 0. Then
V. (~0) = yi(-0) = —y3'(0) forall 6> 0. (1.42)
We now relate the logarithmic asymptotics for W and L in a general G/G/1 queue when the

arrival and service processes are independent (but the service times need not be i.i.d.). We prove
the following result in §6.

Theorem 6. Consider a G/G/] queue in which the service times {V,) are stationary and
independent of the arrival process. Let the arrival process satisfy the assumptions of Theorem S.
Let the service decay rate function y, satisfy the auxiliary LD regularity conditions (1.23)-(1.26)
with limit of support B, in (1.23). Assume that

E* <wforaln21and6<p, (1.43)

n-VlogEe®™ = y,(0) asn — e for 6 < B, . (1.44)
Then (1.1) and (1.36) boch hold with 63y(p) = 0} (p)for each p,0 < p < 1.
1.5 Queue Leagths

In this section we discuss the logarithmic asymptotics for the steady-state queue length
(ournber in system). Let O and 0° be the seady-state queue length at an arbitrary time and at an
arrival epoch, respectively, which we assume are well defined. As in §1.3, let G/GU/1 mean i.i.d
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service times that are independent of general stationary interarrival times. We prove the
following in §8.
Proposition 9. In the G/Gl/I queue, (1.1) holds if and only if the the analogs of (1.1) hold for Q

and Q°, in which case

0p = Qg = log Ee**"" = y,(0%) . (1.45)

2. Proof of Theorem 2

In this section we prove Theorem 2. For this purpose, we perform a change of measure for

each n. In particular, for eachn 2 1, let P, be the probability measure on R* defined by

Pridsy.... . dey) =S8 by e X edsl)
[ IR T ] ECXP(O.S,) 1 | EERRNEY | [

= exp(0°S,~Va(0°))P(X €dx,,... X €dx,) , @.n

where y,(8) = log Eexp(6S,)and y,(8°) < e fora 2 1by (1.6).

We base our proof on the following strengthened form of the weak law of large numbers.
This is closely related 10 claim 1 on p. 17 of Bucklew (1990) in his proof of the Gartner-Ellis
theorem. However, we only make assumptions locally sround 6°, whereas Bucklew's
assuinptions arc more global. We will nced the cases £ = 0 and &k = | in our proof of
Theorem 2. We prove Theovem 7 in §3.

Theorem 7. Let k be a fixed nonnegative integer. Under the conditions of Theorem 2 (excluding

(1.8)ifk = 0), foreache > O there exists ng andn = n(e) € [0,1) such that

P.‘.[I-S-f;‘-‘--vl>¢]$n“fornzno. 2.2)

Since M, is nondecreasing, M, ~» M w.p.1. The desired result (1.9) implies that M must be

proper. Since P(M > x) = P(T(x) < =), where

_
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T(x) =inf(n20:85, > x},
it suffices to show that

x~1log P(T(x) < 00) = —8* as x = oo .

(2.3)

(2.4)

Let [x] be the greatest integer less than or equal to x and let [x] be the least integer greater than

or equal to x. Now, for € and v given, and any x and n(e),

P(T(x) < w) = 3 P(T(x) = j)

j=1
n(e) Le(1-ewv)
STYPTx)=j)+ ¥ P(T(x)=))
j=1 j=n(g)+]
Le(1+ewv) -

+ Y PMTx)=j)+ T PTK =j).

j= fx(1 -3V j=lx(1+ )M
Given ¢, we choose n(e) in (2.5) so that for all n 2 n(e) we simultaneously have

In='w.(8°)l < min(-leg-n.e}

-1 - (A4 .
|n Sa-2 V' >—l+¢ <N

2.5)

(2.6)

.7

for k = 0 and 1 for some 1) with 0 < n < 1. This is possible because of assumption (1.4) and

Theorem 7.
For the first term in (2.9),

P(T(x) = j) S P(S; > x)
S Ej(exp(-0°S; + v;(8%)) ; §; > x)
< exp(-0°x) E; [exp(w;(6°%)) ; §; > x]
S exp(-0°x)exp(v;(6°)) .§

We use (1.6) to ensure that (2.8) is finite.

(2.8)
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For the second term in (2.5), note that (starting with the reasoning in (2.8))
P(T(x) = j) S exp(-0°x)E] [exp(y;(6°)); §; > x] ,

where

E [exp(;(68°); S; > 1] S exp lf [‘—"’f—ﬂ] P}(S; > )

< exp [;(—‘—'%L'Jl P [s,- > T%

J

S exp [j {18 ) P}[(j"‘s,--v> l—!-e—-v

S exp J-‘-I-'i’l-'-l-)-J P}[lj"s,- -vl >

2
S exp 1{:%‘-1”# < exp [j'—%‘-n] . 29)
t
Hence,
rl(l"‘CW] -
T P(T(x) = j) Sexp(-8°x) T 02 Sexp(-8°x)(1-V)~! .  (2.10)
jen(t)+ 1l jel
For the third term in (2.5),
P(T(x) = j) < exp(~0°x) Ej (expy;(8°) ; §; > x] , (2.1h
where

Ejlexp(w;(8°)): S; > x) S exp(w;(.")) S exp(je) S exp(ex(1+e)V) . (2.12)

For the fourth term in (2.5),
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P(T(x) = j) S P(S;-, $x,5;>x)
S Ej[exp(—0°S; + y;(8°) ; S;_; Sx,5; > x]
S exp(-0°x)exp(y;(0°) P} (S;-y S x),

where

| g
P;(S'-l $x)S Pj sj-l s "l'!#

\

= P} [si'-l <V
J l1+€

(
SP 2L _y] 5 £ ] sn/
| J 1+¢

by Theorem S with k = 1. Since y;(6°) S -(log 1)/2 by (2.6) for j in this sum,

T P(T(x) =j) sexp(-0"0) T2 Sexp(-0"0)(1-Ym)~! . (213)
j= (1 +e)v) j=0

Combining (2.5), (2.8), (2.10), (2.12) and (2.13), we obtain

. a(e)
P(T(x) < w) S exp(~6°x) { ¥ exp(w;(6")) + (1-Vn)~!
jot

+ [-27"- + 1|exp(ex(1+e)AV) + (1-Vn)~! } .

Heace, using condition (1.6),

limx~'logP(T(x) < e) S -6° + e(1+)NV .
P L )

Since ¢ was arbitrary,

limx~'logP(T(x) < e) S -0° . (2.14)

We now establish the lower bzund. For this purpose, let m(e) = [x(1+¢)Ar). Then
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P(T(x) < o) 2 P(Spe) > X)
2 Eme)[€XP(=6"Smiey + Wm(e)(8") i Smeey > 1]

m(g)v
l+e

[ . .
2 Ene) [€XP(~6" Sy + Wm(e)(8°) 5 Smeey >

2 Epe) [€Xp(=0"Sme) + Wme)(8") s m(€)™" Sy = vl < ﬂ-:l

L l+¢
. [ 14+2¢
2 Ence) (exp(~8 y it T7e L m(e)) + Vne)(8°) : Im(€)™' Speey = vl < I_E}e_]
. (l+25) . . = (A"
2 exp ["9 V‘—l':-e—m(ﬁ) + Ym(e)(® )J P,m){lm(e) 'S,m) -v| < el
Since
P,‘..(,)[lm(c)"s,(,) -vl < -i%] S 1asx— e
by Theorem §,
lim x~'og P(T(x) < ) 2 lim {_e.v(l+25) m(e) _ cm(c)}
F =y 7=~y 1+¢ X X
2 -0°(1+42e) —e(1+e)V.
Since & was arbitrary, we conclude that
limx~' logP(T(x) < ) 2 -0° . @.15)
X

Combining (2.14) and (2.15) completes the proof.

3. Proof of Theorem 7

As before, let W, (0) = log Ee** and recall that n~'vy,(0) = W(6) a8 n = e for
|0-6°] < ¢* where 6° and ¢° are as assumed. We stant with the case &k = 0. Then, for each 6.

0<obce,
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Pa(n~'S, > v + &) S exp(~0n(v+g)) E,exp(6S,)
where

exp(-0n(v+¢€)) Eqexp(0S,) = exp(-Gn(v+e))Iexp(ex)exp(e‘x-w,.(e‘))P(S,.e dx)
= exp(-0n(v+e))exp(y.(0+6°)-y,(6°%)) .

We choose ng in Theorem 7 suitably large so that y,(0+6°) < oo, which is possible by (1.4)

and (1.5). We use the fact that Ee*'% < o when Ee®* < wand0 < 8, < 0, hence

limn~'10gP(n~ S, >v+e) S W(8" +0)-y(6°)-0(V+E) . 3.1
R=bes

However, by Taylor's theorem,

Y(0+6°)-y(0°)-0(v+e) = ¥ (0°)0+0(0)-0(v+e) as 8 = 0
= —=0¢ + 0(0) as 60 .

Hence, we can choose 6, with0 < 6. < ¢° sothat

V(e. +01)-V(0. )-0, (v+e) < -0.:/2

iimn-'logPi(n~'S, > v+e) S -0,8/2,
B hpm

which establishes one half of (2.2).
On the other hand, for0 < 6 < ¢°,

Pi(n~'S, < v-2) = P.(-8S, > -0a(v-t))
< exp(6n(v-¢)) E exp(-6S,) ,

exp(8n(v-t)) Eyexp(~0S,) = exp(6a(v-e)) [ exp(-0x) P3(S, € dx)
L al’(eﬁ(\’-l))ﬂp(Vn(e' -e)-Vn(e. »N.
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Hence,

lim Py(n~'S, < V=€) S B(V—€)+y(0° -0)-y(B") . (3.2)

Then, as before,
y(0°-0)-y(8°)-0(v-€) = -08e+0(B8) as 6§ = 0
so that we can choose 8, with0 < 8; < €° so that

W(8°~0;)-y(0°)+0,(v-€) S -6,€/2

lim n~'logPo(n"'S, < v-¢) S -6,¢/2,
R=bes

which completes the proof for k = 0.

For k 2 1, we first note that E exp(6(S,~Sa-1)) < e for all 16| < & for some & > 0 if

condition (1.8) holds. To see this, apply the Cauchy-Schwarz inequality k times to obtain

Eexp(8(Sy~S,-1)) S (E exp(6X,)2) 2 E(exp(8(Sa-y~Sa-1)?)?
S (E exp(20X,))' 2 E(exp(20(S -1 = Sa-1 )"
S (E exp(20X,)) 2 (E exp(46X,-1))'"*...(Eexp(2t*1 06X, -1 41))?

8oty

We choose nq suitably large so that, for some finite M,
(&ZOX, )|n£(¢4“... )m"'&?".l...., )2-«-1» <M
for all & 2 ng, which is possible by assumption (1.8).

Fork 2 1, we then have
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Py(n~'S,_, > v+€) S exp(~0n(v+€)) ELexp(0S,_;)
n-k n
< exp(=0n(v+€) [ exp(8 Y x)exp(8° T x;~ Y, (8°) P(X edxy, ..., Xpe dx,)
in] im]
s CXP(-OH(V+€))E[6XP((9+9.)sn'e(s.u'sn-t)'\l’n(e‘))]
< exp(=0n(V+¢e)(E exp(p(8+6°)S,)) P (E exp(=q0(Sy —S,-1))) Texp(-y,(6*))
for positive p and ¢ with p~'+¢~! = 1 by Holder's inequality. We choose p sufficiently close
to 1 and O sufficiently small so that p(6+8°) is within the required neighborhood of 8° and

g0 < 8,50 that E exp(=¢0(Sa=S.-2))/ is bounded for n 2 ny. Hence,

Umn~'logPL(n~' Sas > v+e) S =B(V+E)+y(p(8+8°)) P —y(8°) .  (3.3)
R=dos

Since p was arbitrary, we canlet p = 1in (3.3) to obtain the analog of (3.1) with S, ., instead of
Sa

Similarly,

Pa(n~' S,k < v=2) S exp(0n(v-e)) Ezexp(-8S,_;)
-k [
< exp(Gn(v-e)I exp(-e zxi)‘exp(ﬂ' zx;—v.(e'))P(X'c dry,....X,edx,)

i) iw]

s C!P(e'l(\'-t))ﬂﬂp(a. "e)s- +e(s- "sn-k)"Vn(e. )‘

S exp(0n(v-e))(Eexp(p(8° =8)S,))'? (Eexp(q0(S, = Sa-1))) 1exp(-w,(6"))
foc positive p and g with p~' +¢~! = 1 by Holder's inequality. Reasoning as in (3.3), we obtain
Uma~logPi(n""Ses < V=£) S O(V-2)+y(p(8° ~8))'? -y(8°) . (3.4)

Letting p— 1 in (3.4) we obtain the analog of (3.2) with S, _, instead of §,,. The rest of the proof

isthesameasfork = Q.
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4. Proof of Theorem 4

We construct discrete-time processes satisfying the conditions of Theorem 1 that suitably
approximate the continuous-time processes. In particular, for any 8 > 0, we construct a
discrete-time waiting-time process { W3} by defining service times VS and interarrival times U®
via

V= I(n+1)8)=I(nd) and US=8,n21. @.1)

Since EY(1) = pt for p < 1, EV® < EUS. We initialize by setting W§ = L(0). Then, by

induction, we have
WEsLnb) s W +8,n20. 42)

Since Y(r) has stationary increments, L(¢) is distributed the same as sup{Y(s) : 0 € s S 1}.
Since this supremum is nondecreasing, L(t) s> L as ¢ —> . Since W! = W® and

L(n8) =» Lasn ~> e, we have
Ee®™ < EefL < e ES™ | @.3)
From (4.3), we see that Ee% < e if and only if Ee*™ < .

Hence, it suffices to show that sup(0: Ee®™ < ) = 6°. For this purpose, let
Sav+..+ Vi -nb Then

&Mm—t) a EMTAL-B o pero)

< E MWD ¢ p WTAleh @.4)
Therefore,
'u':l.l_:"log £V ¢ 'lf‘n;t"log Ee* g umml" log L 4.5
Hence,
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lim n~'log Ee®" = §~1y(0) . 4.6)

N =bes

Since 5~y (8) = Oifand only if y(8) = 0, the proof is complete.

S. Proof of Theorem §
By Theorem 3,
n"logEe'“:. = Yi(=0) = —y3!(0) as 1 =

for each 8 > 0. Now we consider the waiting time and workload in the G/D/1 queue with the
given point process as the arrival process. We let the deterministic service times have mean 1 and

the arrival processes have rate p where 0 < p < 1. This requires that we scale the original

process.

By Theorem 1, in the customer-stationary case (1.1) holds for each p, 0 < p < 1, where

0w (p) satisfies equation (1.30), i.c.,
Vu(-Ow(p)p) = -Ow(p) .0 <p < 1. (5.1)

On the other hand, by Theorem 4 and Proposition 7, in the time-stationary case (1.36) holds for

eachp, 0 < p < 1, where the decay rate 6] (p) satisfies
PYA(W,(81(p))-B1(p) = pwA(BL(p))-0L(p) = O, (5.2)
because the decay rate function of A(pr) is py,. However, by (1.29), (5.2) is equivalent to
-¥:(=81(p)/p) = wi'(8L(p)/p) = B(p) .0 <p < 1. A
By Proposition 8, Ow(p) = 0;(p) for0 < p < 1. Hence, (5.3) becomes
Va(~0w(pVp) = -0w(p) .0 <p < 1. (5.4

Finally, by Proposition S, (5.1) and (5.4) imply that y, = y.. ®
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6. Proof of Theorem 6
By Theorem S, ¥, (—=0) = —yi'(8). Paralleling the proof of Theorem S, we have
V. (-0 (p)/p) = -v,(Bw(p)) . 0<p <1, (6.1)
instead of (5.1) and
PWA(Y,(BL(p)-0L(p) =0,0<p <1, (6.2)
instead of (5.2). However, (6.2) is equivalent to
va'(BL(P)/P) = ¥, (BL(p) , O <p < 1. (6.3)
Since y3!(0) = —w,(-8), (6.3) coincides with (6.1), 50 that we must have 03(p) = 0% (p).
O<p<l =
7. Proof of Proposition 7
Note that, for any ¢ > 0, there is an ng such that
TV

- - ey Y,
Ee¥® = F Ee ' P(A(1) = n)

- a aivl
S T O pAr) =) + Be =

ne0
ate
< a"-“’ *O0AD Ee.';‘v‘
e
g Mv® e E".“.:.V‘

foc ¢ suitably large. Hence,

iim r"logsci“" Swalwy(®) +0) +¢.

[ X ]

Since ¢ was arbitrary and v/, is continuous at v, (8),




-30-

fim ¢~ og Ee®™ <y, (yy(8)) .
t=des
The reasoning for the other direction is essentially the same. @

8. Proof of Proposition 9

We shall work with characterization (ii) in Proposition 1. Note that

Q-1 Q-1
W= ¥ Vi+eVi2 Y V @.1)

in] inl

Q-1 Q-1
L= Y +V,2 ¥ Vi, (8.2)

in] iw]
where Vi and V, are the equilibrium residual service times of the customer in service (which in
general depend upon Q° and Q). Since the argument is essentially the same for W and L, we
henceforth consider only W. To have a useful inequality in the opposite direction, we truncate the
service times by setting V; = min{V,,c},n 2 1. Then

W‘SEV‘[«H:. (8.3)
From (8.1), we obtain

Ee'™ 2 E(E*"H)T -1,

%0 that 6~ 2 log Ee**™. (As in Proposition 8, we use the fact that 6} < 6y,.) From (8.3), we

obtain
Ee®™ < e™EES )9,
20 that

log E¢* " 2 03 .
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Then note that V§, W¢, 2%, Q° and L¢ increase stochastically to their limits V,, W, 9%, Qand L

as ¢ —> oo, see Theorems 4, § and 8 plus the remark on p. 216 of Whitt (1981). Hence

0% < lim inf@%« < limlog E*Y = log E™"' cw. m
£ =pos

C=ben

9. An Example

In this section we give an example.

Example 1. To see that the conditions in Theorem 1 are not necessary for (1.1) or (1.2), consider

the G/G/1 model with
P(Upo1 m 1, Upps2 =1 + Yo, Vope1 =1 ¢+ Y, Vg2 =0forall n) = 12
and
P(Ugpey =1 + Yo, Ugpea = 1, Voo 0, Va2l + Y, foralln) = 172,

where (Y, } is an i.1.d. sequence of exponential random variables with mean 1. Thea (U,.V,}
is stationary with EV, = | < EU, = 3/2,s0that p = 2/3. Moreover, it is easy to see that, for

nz2l,

PW,>x)mP(W>x)=(12)e*, x>0,

P(S1ae1 = Yo, S2ae3 = = for all &)
s P(S;m-(n+Y)), S8 Y, ~(n+Y))foralln) =12,

90 that
&‘shu H l&.’l + l&-.(."l) )
2 2
&“--n - _l_ ‘—.o + _l_&.(’..n""n) ,
2 2
and
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n~'log Ee®* 5 y(8) = -0/2 25 1 > oo

Hence, (1.1) and (1.2) hold, but w(6°) = Ofor6® = 0. =
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